

NuMI Primary Beam

November 4, 2004

NuMI Primary Overview

- Design Features & Beamline Layout
- Status
- Start-up

NuMI Primary Design Parameters

Proton beam energy	120 GeV
Spill cycle time	>= 1.87 sec
Batch length	84 batches
Batch spacing	18.8 nsec (53 MHz)
Transverse emittance	15-20π mm-mr expected (95%)
	500 π mm-mr maximum envelope
Momentum spread	$2 \times 10^{-4} \delta p/p 2\sigma$ expected
	$3 \times 10^{-3} \delta p/p 2\sigma max$
NuMI spill (pbar operation)	5 batches = $8.14 \mu sec$
NuMI spill (no pbar operation)	6 batches = 9.78 μsec
Maximum intensity	4 x 10 ¹³ ppp (protons/spill)
Total beam power	404 kW at maximum intensity

Extraction, Upstream Primary Constraints

- NuMI extraction design uses three kicker magnets to enhance cleanliness of extraction. Also the three Lambertson magnets are on two separate power supplies.
 - « LAM60, then LAM61A&B. Reduced current for 1st magnet enables better clearance at MI Q608; then run 2nd & 3rd Lambertson at higher currents to reach essential vertical beam separation. This design choice taken as option of large aperture Q608 not available at the time
- Fringe field shielding installed on the six HV101 EPB dipoles to lower field at Recycler ring to ~ 2 Gauss max.
 Without this shielding, fringe fields are ~ 30-40 Gauss for worst case.
 - « D. Jensen, R. Reilly successfully tested for two magnets before shutdown; installation is complete.

Beta & Eta Functions: Primary Beam Design

Beam Transport & Aperture Clearance

Nov 4, 2004 NuMI Primary Beam S. Childress

Maximal Beam Sizes, 500pi & 3E-3, vs Clearances 09/27/02

MI-60, Extraction & Pretarget Enclosures

Nov 4, 2004 NuMI Primary Beam S. Childress

Extraction Enclosure
156 mrad down-bend

Pretarget Enclosure

98 mrad up-bend & target focus

Targeting Requirements

- Beam's eye view of target and baffle.
- Beam size on target: (σ) 1_{mm}
- Position stability on target $(\sigma) + /- 0.25 \text{ mm}.$
 - « Minimize physics backgrounds
- Angle stability on target 60 μrad
 - « Modest requirement for low energy beam

Kicker Construction

- 3 kicker Magnets
 - « Each 2.2 m length
 - « 60 kV max.
 - « 4.0 kG-m at nominal 48 kV
- Magnets installed and pulsing in tunnnel; (tested to 57 kV)
- Tight specification for kicker waveform stability at flat-top [10 µsec length]
 - « +/- 0.5%
 - « Driven by beam targeting stability

NuMI Magnets and Correctors

- 3 Kickers are new; "MI style" but with recovered ceramic beam tubes
 - « Vendor no longer available for new long ceramic tubes
 - « Share spare with MI
 - « New "long batch" power supply
- 3 Lambertsons are new; MI design
 - « Share spare with MI
- Refurbished dipoles [6 EPB's, 10 B2's, 2 SY Trims[and Quads [17 3Q120's and 4 3Q60's]
 - « All are ramped
 - « Separate power supply for each quad
- New MI design correctors of MI-H style 19
 - « Rotated 90 deg. for vertical correctors
 - « 30 amp power supply; all ramped; external water cooling plates

NuMI Instrumentation

- Beam Position Monitors 24
 - « Detectors are MI-8 style split plate
 - « Electronics is digital receiver design similar to Recycler
 - * Separate position and intensity readout for each batch
- Profile Monitors 10
 - « New design: 5 micron Ti foils
 - « Built by U. Texas, Austin collaborators
- Intensity Monitors − 2
 - « Standard design toroids
- Beam Loss Monitors 53
 - ≪ TeV style sealed BLM's − 49
 - ≪ Total Loss Monitors − 4
- Resistive Wall Monitor
- OTR Monitor 1
 - « Being built along with Run II upgrade units

MINOS

Beamline Tour MI-60 Region

MINOS

NuMI "Stub" & Carrier Tunnel

Lower Hobbit & Pretarget

Current Status

- All components installed
- All component initial alignment complete
- Power supply testing in Pretarget area ongoing ~ Thursday thru Sunday each week. Power testing in MI area to resume as tunnel is secure
- Instrumentation checkout ongoing
- Vacuum hook-up is well advanced
- Final alignment ongoing
- Critical paths are final alignment and vacuum completion
- Have requested initial NuMI extracted beam 1st week of December!

NuMI Primary Beam Startup

Nov 4, 2004 NuMI Primary Beam S. Childress

- NuMI beam system readiness at conclusion of current shutdown:
 - « Extraction and Primary beam ready for initial beam startup by3 December
 - « Hadron Absorber ready for initial beam startup by 3 December
 - « Target Hall can accept low intensity beam in target out mode by 3 December. Full beam readiness in 2nd half January '05 [Jim's Talk]
- A high priority is to understand / resolve any significant NuMI extraction and primary transport issues while accelerator systems are still in start-up mode, and before pbars are stored in Recycler. NuMI extraction components and a major part of primary transport are in the MI / Recycler tunnel interlock region.

Requested NuMI low intensity beam start-up beginning Friday, 3 December

Initial Startup: Schedule & Intensity

Schedule:

- « Request initial NuMI beam cycle in timeline for a total of four 12 hour shifts one shift on each of Friday 3 Dec., Saturday 4 Dec. and two shifts on weekend of 10-12 Dec.
- « A meeting to review start-up plans with AD experts is scheduled for 11 Nov.

• Initial Intensity:

- « Based on Target Hall MARS results plan for integral NuMI intensity of < 1E14 protons in a 48 hour period</p>
- « Operation for first weekend at 3E11 protons/pulse, with one NuMI cycle in a supercycle
- Will then control beam switch for NuMI to transport beam only after previous pulse understood

Pre-beam Commissioning

- We can and will establish readiness of systems for primary beam prior to first extracted beam pulses.
- These include:
 - « Magnet function & connection polarities
 - « Power supply function / ramp parameters
 - « Kicker & power supply function
 - « Recycler shielding from EPB fringe fields
 - « Instrumentation function and readout polarities
 - « Beam Permit System [establish & test 1st limits for all but NuMI BLM's]
 - « Control timing
 - « Verify documentation capability Profiles, BPM's, BLM's, Intensity
 - « Main Injector beam suitable for extraction

Initial Beam Priorities

Know that the basics work

- « Establish beam to the Hadron Absorber
- « Verify kicker system function
- « Verify instrumentation function
- « Verify appropriate beam optics
- « Verify alignment with beam
 - * Quads for acceptable corrector currents
 - * Limiting apertures for beam loss control
- Radiation safety verification for levels from first low intensity operation
- Understand any problems which can need tunnel access, and plan for solutions
- As part of initial commissioning process, fully utilize and verify function for beam permit and beam control systems
- Look toward full intensity Primary Beam commissioning as Target Systems are ready